Optimal Model Management for Multifidelity Monte Carlo Estimation
نویسندگان
چکیده
This work presents an optimal model management strategy that exploits multifidelity surrogate models to accelerate the estimation of statistics of outputs of computationally expensive high-fidelity models. Existing acceleration methods typically exploit a multilevel hierarchy of surrogate models that follow a known rate of error decay and computational costs; however, a general collection of surrogate models, which may include projection-based reduced models, data-fit models, support vector machines, and simplified-physics models, does not necessarily give rise to such a hierarchy. Our multifidelity approach provides a framework to combine an arbitrary number of surrogate models of any type. Instead of relying on error and cost rates, an optimization problem balances the number of model evaluations across the high-fidelity and surrogate models with respect to error and costs. We show that a unique analytic solution of the model management optimization problem exists under mild conditions on the models. Our multifidelity method makes occasional recourse to the high-fidelity model; in doing so it provides an unbiased estimator of the statistics of the high-fidelity model, even in the absence of error bounds and error estimators for the surrogate models. Numerical experiments with linear and nonlinear examples show that speedups by orders of magnitude are obtained compared to Monte Carlo estimation that invokes a single model only.
منابع مشابه
Convergence analysis of multifidelity Monte Carlo estimation
The multifidelity Monte Carlo method provides a general framework for combining cheap low-fidelity approximations of an expensive highfidelity model to accelerate the Monte Carlo estimation of statistics of the high-fidelity model output. In this work, we investigate the properties of multifidelity Monte Carlo estimation in the setting where a hierarchy of approximations can be constructed with...
متن کاملMultifidelity Monte Carlo estimation with adaptive low-fidelity models
Multifidelity Monte Carlo (MFMC) estimation combines lowand high-fidelity models to speedup the estimation of statistics of the high-fidelity model outputs. MFMC optimally samples the lowand high-fidelity models such that the MFMC estimator has minimal mean-squared error for a given computational budget. In the setup of MFMC, the low-fidelity models are static, i.e., they are given and fixed an...
متن کاملApplying Point Estimation and Monte Carlo Simulation Methods in Solving Probabilistic Optimal Power Flow Considering Renewable Energy Uncertainties
The increasing penetration of renewable energy results in changing the traditional power system planning and operation tools. As the generated power by the renewable energy resources are probabilistically changed, the certain power system analysis tolls cannot be applied in this case. Probabilistic optimal power flow is one of the most useful tools regarding the power system analysis in presen...
متن کاملMultifidelity preconditioning of the cross-entropy method for rare event simulation and failure probability estimation
Accurately estimating rare event probabilities with Monte Carlo can become costly if for each sample a computationally expensive high-fidelity model evaluation is necessary to approximate the system response. Variance reduction with importance sampling significantly reduces the number of required samples if a suitable biasing density is used. This work introduces a multifidelity approach that l...
متن کاملPositive-Shrinkage and Pretest Estimation in Multiple Regression: A Monte Carlo Study with Applications
Consider a problem of predicting a response variable using a set of covariates in a linear regression model. If it is a priori known or suspected that a subset of the covariates do not significantly contribute to the overall fit of the model, a restricted model that excludes these covariates, may be sufficient. If, on the other hand, the subset provides useful information, shrinkage meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 38 شماره
صفحات -
تاریخ انتشار 2016